From 1 - 4 / 4
  • Categories    

    In 1963, the Glen Canyon Dam, in Hite Utah was completed, creating the Lake Powell reservoir along the Colorado River. The water levels of Lake Powell peaked in 1983 and have declined since, releasing over-pressure on the underlying sediment. This release in over-pressure created mud volcanoes, structures along the shoreline made of cavities that allow fluid and gases to rise to the surface and escape. Green house gases including methane are released from these structures, and to better understand how development of natural wetlands can result in unintended increased levels of greenhouse gas emissions, we asked 1) how much of each gas is generated or and whether the amount of each gas is changing through time and 2) how are these gases forming in the subsurface? We first measured the amounts of carbon dioxide (CO2), methane (CH4), and air (N) in volcano gas samples collected in 2014, 2015, and 2016. We found that from 2014 through 2016, methane levels from these volcanoes fluctuated significantly. In 2016, we looked at the amounts of carbon and hydrogen isotopes in the methane, which told us the gas is generated from microorganisms feeding on organic matter and is released during water-level fluctuations. We looked at mud volcanoes only located along the Lake Powell marina delta in Hite, Utah. The data spans geological structures restricted to one marina delta.

  • Categories    

    Water quality parameters of the surface water from two permanent sampling sites on the Samford Creek, southeast Queensland, Australia, are determined. The parameters include water temperature, flow velocity, turbidity, major cations and anions, plus total inorganic and organic nitrogen and phosphorus.

  • Categories    

    This data contains soil physico-chemical characteristics collected at the Great Western Woodlands site in 2012 and 2014.

  • Categories  

    River sites were sampled during the summers of 2008/09 and 2009/10 in a survey designed to identify correlations between commonly used river condition variables and grazing land-use. Potential stream sites in northern Tasmania were screened by catchment size, northing and slope, and according to attributes aimed at minimising confounding variables, maintaining broad consistency in landscape and geomorphological context, and promoting independence among sites. A set of 27 survey sites was selected across a gradient from low to high proportion of land under grazing in their upstream catchments. Catchment sizes varied from 20-120 km2 and proportion grazing from 0-80%. Macroinvertebrates were sampled using Surber sampler. All macroinvertebrates within a 20% sub-sample identified to family and counted, with individuals from the insect orders Ephemeroptera, Plecoptera and Trichoptera identified to genus/species (by Laurie Cook, UTAS). Algal abundance was estimated at each site as the proportion of algal cover and as areal density of benthic chlorophyll a. Physical data variables collected were: water temperature, conductivity, turbidity, pH, total alkalinity, nitrate+nitrate, dissolved reactive phosphorus, total nitrogen, total phosphorus, overhead shading, the proportion of fine sediments within the sampled riffle zone, accumulated abstraction index and accumulated regulation index. For more information see: See Magierowski RH, Read SM, Carter SJB, Warfe DM, Cook LS, Lefroy EC and Davies PE. Inferring landscape-scale land-use impacts on rivers using data from mesocosm experiments and artificial neural networks. PLOS ONE.